If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6v^2-6v=0
a = 6; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·6·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*6}=\frac{0}{12} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*6}=\frac{12}{12} =1 $
| p-5÷4=2.75 | | 12x+54=9x-42 | | 12x+54=4x-42 | | (5x-4)(2x-3)=3 | | 50,000=p+p(.5)(20) | | 8−4s=s+13. | | (h+17)+(h+5)=180 | | 3z/7+8=6 | | 4x-55+x+12=180 | | 4x-55+x-12=180 | | r+0.77r=5.13 | | 2x-3=12,x | | 3z/10=7 | | 5x13=8-2x | | -3x-7=24 | | 3x^2+144x=0 | | 4(y+2)=26 | | x+11=42-(x+5) | | 4(-3t-18)=-9t-12 | | 4^4x-5=2^2x | | 6(4x-7)(6x+5)=0 | | 30-27=x | | 40.1=t^2 | | 49.1=t^2 | | (9/10)z-2=(-19/20)z+3 | | 5(3x-2)(2x+3)=0 | | 180=16y+25 | | y=(8/y)=-9 | | 180=6y-73+y+22 | | (10-0.5x)(7-0.1x)=0 | | 3z-7z=3 | | T+45=3t-46+10+t |